

A150851


Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(1, 0, 0), (0, 1, 0), (0, 1, 1), (1, 0, 1), (1, 1, 1)}


0



1, 2, 8, 32, 140, 626, 2886, 13490, 63872, 305112, 1467868, 7102336, 34517496, 168387396, 823951534, 4042200638, 19873743788, 97891883374, 482955922222, 2385980736896, 11801790984722, 58436594936270, 289615703646050, 1436524045239548, 7130447748994688, 35415979831479054, 176007162177169918
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


LINKS

Table of n, a(n) for n=0..26.
A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, ArXiv 0811.2899.


MATHEMATICA

aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0  Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[1 + i, 1 + j, 1 + k, 1 + n] + aux[1 + i, j, 1 + k, 1 + n] + aux[i, 1 + j, 1 + k, 1 + n] + aux[i, 1 + j, k, 1 + n] + aux[1 + i, j, k, 1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]


CROSSREFS

Sequence in context: A150849 A150850 A179469 * A150852 A150853 A150854
Adjacent sequences: A150848 A150849 A150850 * A150852 A150853 A150854


KEYWORD

nonn,walk


AUTHOR

Manuel Kauers, Nov 18 2008


STATUS

approved



